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Abstract 
 

Rule-based forecasting (RBF) is an expert system that uses features of time series to 
select and weight extrapolation techniques. Thus, it is dependent upon the identification 
of features of the time series. Judgmental coding of these features is expensive and the 
reliability of the ratings is modest. We developed and automated heuristics to detect six 
features that had previously been judgmentally identified in RBF: outliers, level shifts, 
change in basic trend, unstable recent trend, unusual last observation, and functional 
form. These heuristics rely on simple statistics such as first differences and regression 
estimates. In general, there was agreement between automated and judgmental codings 
for all features other than functional form. Heuristic coding was more sensitive than 
judgment and consequently, identified more series with a certain feature than judgmental 
coding. We compared forecast accuracy using automated codings with that using 
judgmental codings across 122 series. Forecasts were produced for six horizons, resulting 
in a total of 732 forecasts. Accuracy for 30% of the 122 annual time series was similar to 
that reported for RBF. For the remaining series, there were as many that did better with 
automated feature detection as there were that did worse. In other words, the use of 
automated feature detection heuristics reduced the costs of using RBF without negatively 
affecting forecast accuracy. 

 
 
 

1. Introduction 
 

Rule-based forecasting (RBF) is an expert system developed by Collopy and Armstrong (1992a) (hereon 
referred to as C&A). Its original version consisted of 99 rules that combine forecasts from four simple extrapolation 
methods (random walk, linear regression, Holt's exponential smoothing, and Brown's exponential smoothing). RBF 
relies on the identification of up to 28 features of time series to weight forecasts from these four methods. Based on 
empirical comparisons conducted on 36 time series, C&A concluded that RBF provided more accurate forecasts 
than could be obtained from an equal-weights combination of the four methods. 

 
Rule-based forecasting is based on the premise that the features of time series can be reliably identified. Eight 

of these features are identified by analytical procedures coded in RBF while the rest rely on an analyst's knowledge of 
the domain or visual inspection of plots. Judgmental identification of these remaining features is time-consuming, relies 
on scarce and expensive expertise, and has only a modest inter-rater reliability. 
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The identification of time series features has already been automated in one study. Vokurka, Flores and Pearce 

(1996) automated three features from RBF: irrelevant early data, outliers, and functional form. Their extension differed 
in a number of ways from C&A. They allowed for user interventions at several points in the forecasting process. The 
base methods - simple exponential smoothing, Gardner's damped trend exponential smoothing (Gardner, 1999), and 
classical decomposition - differed from those used in RBF. Finally, they used only a subset of the features identified in 
C&A. Their results were similar to those reported in C&A. Forecasts were, in general, more accurate than those from 
equal-weights as well as from a random walk. 

 
Improved reliability of feature identification may improve accuracy (Stewart, 2001). In this study, we 

developed and validated heuristics for the identification of six features used in RBF. We expected that automating the 
feature detection process would reduce the inconsistencies in feature coding that result from differences in the 
experiences, abilities, and biases of expert coders. From a practical standpoint, automatic identification is less 
expensive because it automates time-consuming judgments. This is important for coding large data sets. From a 
research point of view, it should also aid replication and extension. 

 
The next section describes the features used in RBF to characterize time series. We then discuss the six feature 

detectors. Judgmental and automatic codings are used to produce rule-based forecasts. These forecasts are compared 
with those from common benchmark methods. The paper concludes with an evaluation of the forecast accuracies from 
judgmental and automatic codings. 
 
 

2. Features of Rule-Based Forecasting 
 

Forecasting experts report that they base their selection of a method in part on patterns in the data. In a survey 
of forecasters (Yokum & Armstrong, 1995), 72% of the 319 respondents agreed that “experts can, by examining a time 
series and its characteristics, improve the accuracy of forecasts by selecting the best among available extrapolation 
methods.” Only 12% disagreed, the rest being undecided. Historically, forecasters have characterized time series on 
broad patterns that represent the level, trend, seasonal variation, and uncertainty. A variety of features have been used 
to characterize each of these. To develop a comprehensive list of the conditions to describe historical time series, 
Collopy and Armstrong (1992b) examined the literature, surveyed experts, and conducted protocol sessions with 
forecasting experts. 
 

Armstrong, Adya and Collopy (2001) describe 28 features of time series. Table 1 summarizes these features. 
C&A used 18 of these features to describe statistical characteristics of the historical data and domain knowledge about 
future events. Of these, eight were identified by statistical procedures contained within the RBF rules. For instance, the 
direction of the basic trend is obtained by fitting a linear regression to the historical data and that for the recent trend is 
determined by fitting Holt's exponential smoothing model to the same data. Six of the remaining features such as level 
discontinuity, changing basic trend, unusual last observations, and unstable recent trends were identified by the analyst 
based on visual inspection of the series. The remaining features relied on the analyst's knowledge of the domain, 
including information about the expected functional form, cycles, whether the series represents a start-up, and the 
causal forces impacting the series. 
 
 

3. Automatic Feature Detectors 

C&A relied on the judgment of its authors for the identification of features. Agreement on these codings 
ranged from 75 to 100% and averaged 89%. Coding a single series took about 5 minutes. This was a deterrent for 
further enhancement and validation of RBF across large samples of time series. In this paper, we develop heuristics for 
the identification of some features of RBF. 
 
 



 3

Table 1. Rule-based Forecasting Relies on 28 Time Series Features 
 
Domain Knowledge Historical Data 
Causal forces  

Growth  
Decay  
Supporting  
Opposing  
Regressing  
Unknown 
  

Functional form  
Multiplicative  
Additive 
 

Cycles expected  
 
Forecast horizon  
 
Subject to events  
 
Start-up series  
 
Related to other series 

Types of data 
Only positive values possible  
Bounded (e.g. percentages, asymptotes) 
Missing observations 
  

Level 
Biased  
 

Trend 
Direction of basic trend  
Direction of recent trend  
Significant basic trend (r  > 2)  
 

Length of series 
Number of observations  
Time interval (e.g. annual)  
 

Seasonality 
Seasonality present 

Uncertainty 
Coefficient of variation about trend > 0.2 
Basic and recent trends differ 
 

Instability 
Irrelevant early data  
Suspicious pattern  
Unstable recent trend  
Outliers present  
Recent run not long  
Near a previous extreme  
Changing basic trend  
Level discontinuities  
Last observation unusual 

 

 
We determined that not all features of RBF could be automated. Features that relied on domain knowledge 

could be better identified by domain experts based on their expectations about the future. Once identified, domain-
based features seldom change over time. While we did attempt to identify one domain-based feature, functional form, 
for the most part we focused our efforts on (a) instability features, and (b) features that were originally identified by 
viewing plots of the time series. These include level discontinuities, unusual last observation, changing basic trend, and 
unstable recent trend. In addition, we simplified the procedures for one feature, outlier, that was already automated in 
C&A. 

 
The detection of features is a sequential process. The order of detection was partly motivated by the 

procedural requirements for RBF. In addition, through a process of trial and error, we found that certain features were 
better detected if other instabilities were not present. For instance, a change in slope was easier to identify if no outliers 
and level discontinuities were present, because the heuristic for changing trend relies on a good fit for the regression 
line. Similarly, RBF procedures rely on the identification of the functional form of a series before any models can be 
fitted. 

 
Our automatic feature detector proceeds in the following sequence. Firstly, the functional form of a series is 

determined. Then, instability features are examined by first looking for outliers and level discontinuities. If an outlier is 
detected, its value is replaced by the average of the adjacent points. If a level discontinuity is encountered, the historical 
data before the level discontinuity is equalized with the current level. For instance, if at t20, the level were 60 and at t2, 
it increased to 100, then the level from t, to t,9 would be adjusted to 100. This adjustment for level discontinuities is 
only used to aid detection of the remaining features since several of them rely on a good regression fit. For producing 
final forecasts, the level for to to t19 reverts back to its original. Adjustments to outliers, however, are retained for the 
remaining procedures. 

 
After this, the last observation is examined to determine if it is unusual (an outlier). If so, it is replaced by the 

average of the previous observation and a forecast obtained from fitting a regression line through data points up to t - l. 
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Finally, possible slope changes and instabilities in the recent trends are identified by fitting regression lines and 
examining the direction and magnitudes of the slopes.1 

 
 

4. Development of the Heuristics 

C&A used 126 time series from the M-competition data (Makridakis et al., 1982) to develop, refine, and 
validate RBF. For this study, we used 122 of these 126 time series to develop and test the automatic feature detector. 
The remaining four series had regressing causal forces, indicating that the forces acting on these series tended to regress 
to a mean. Since we have not encountered any regressing series in our further work with RBF, these series were not 
considered in this study. For testing and refining the heuristics, the 122 series were split into two subsamples - the 
development sample and the validation sample. Series whose identifiers ended with 6, 5, 3, and 2 (a total of 70 series) 
were used to develop and refine the procedures. The remaining 52 series, with identifiers ending in 7, 4, and 8, were 
used to test effectiveness of these heuristics. The series were normalized so that historical values were between 0 and 
100 before being used for feature detection. 

 
For each feature, we used statistical tests to identify a heuristic. For example, we tested linear regression 

residuals to determine trend-based discontinuities, such as a change in basic trend or an unstable recent trend. Similarly, 
we examined first and second differences in a series to identify outliers and level discontinuities. We tested the 
heuristics on the development sample by comparing them with the judgmental coding implemented in C&A. Our 
objective was to minimize the disagreements between judgmental and heuristic codings. If disagreement was high, we 
refined the parameters of the heuristics. Typically these parameters related to the magnitude of first or second 
differences (as in outliers and level discontinuities), or to the standard deviation in a series (as in unstable recent 
trends), or to the magnitude of residuals from a linear regression fit. If adjusting these parameters did not produce 
improvements, we considered alternative heuristics. When there was a reasonable agreement between judgmental and 
heuristic codings on the development sample for a particular feature, we retained the heuristic. We did not have a 
threshold acceptance level for the classifications on the development sample but used our judgment on what constituted 
a reasonable agreement. (Identification of such acceptance thresholds was not possible without a very large sample of 
time series. For instance, for the 70 series in the development sample, the judgmental coders had identified only five 
series with a changing basic trend. Consequently, we were calibrating our heuristics to these five series in the 
development sample.) 

 
We typically developed a two-step approach for the identification of most features. The first step screened all 

observations for the likely occurrence of an instability. Where an instability was suspected, a second test was used to 
identify the nature of the instability. For instance, in the detection of an outlier, the heuristic first compared each data 
point in the series to determine where the deviation existed. However, 'such a deviation could signal either an outlier or 
a level discontinuity. Therefore, the second test examined the nature of the deviation to clearly identify if it were an 
outlier or a level discontinuity. The first test was intended to bring attention to any suspicious patterns in the data and 
the second test was used to confirm the nature of this pattern. We next describe and illustrate the specific heuristics for 
feature identification. 

 
 

4.1. Functional Form 
 

The functional form of a series represents the pattern of growth in the trend of the series. C&A shows that it is 
an area in which domain knowledge and historical data each play a role. The two forms used in RBF are multiplicative 
(exponential growth or decay) and additive (linear). While examining results from C&A's judgmental coding, we found 
that the identification of functional form led to substantial forecast errors on certain series. These were primarily start-
up series with only about 8 to 10 historical observations available. Often these series were characterized as 
multiplicative; however, when the exponential growth of the early years was extrapolated, it produced large forecast 
errors since the rate of growth for the early years could not be sustained. 

 
For the automatic identification, we assumed all series to be growing multiplicatively except when the series 

was (a) a start-up, (b) a short series (defined as a series with fewer than eight observations), (c) expressed in percentage 

                                                 
1 Automatic RBF was programmed in C. 
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terms, (d) contained negative observations, or (e) had a growth rate that appeared to be unsustainable in the long run. 
We assumed an annual growth rate of 20% or more to be unsustainable. We made this assumption since, in our 
experience, most business and economic series are multiplicative (Armstrong, 1985). 
 
 
4.2. Outliers 

Outliers are isolated observations that deviate substantially from the pattern in the rest of the series. Such 
deviations can be due to an unusual, non-recurring event or, sometimes, simply due to mistakes during data 
transcriptions. 

 
We considered a large second difference to be indicative of the occurrence of an instability. We then used a 

regression trend line to specify the nature of this instability. A large second difference at any point in the historical data 
suggests the presence of an outlier or a level shift immediately preceding it. The pattern of the regression residuals from 
this point to the end of the series, however, confirms the nature of this instability. Specifically, the presence of an 
abrupt though temporary increase or decrease in residuals at a point before the large second difference indicates the 
presence of an outlier. This change in residuals should revert back to approximately the same range as before the 
outlier. On detection, outliers are replaced by the average of the preceding and subsequent data points. 

 
Figure 1 illustrates outlier detection. In that series, an outlier occurs at t40. A large second difference is 

indicated at t41. A regression line is fitted through from to to t38 to avoid fitting the regression line to an extreme point. 
The parameters from this fit are used to predict the remaining time periods (i.e. from t3Y to t4,). This fitted line 
indicates a large and temporary change in residuals at the point of the outlier (i.e. at point t,o). Notice that within the 
next two periods, the pattern of residuals reverts back to the same range as before the occurrence of the outlier. 
 
Figure 1. Detection of an outlier: An example. 
 

 
 
 
4.3. Level discontinuities 
 

Level discontinuities are defined here as permanent shifts in the level of a series. For instance, sales may 
abruptly increase as a result of an increase in plant capacity that was provided to meet latent demand. 
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The initial screening for level discontinuities is the same as for outliers; both are identified by the presence of 
large second differences. The point before a large second difference is a possible discontinuity. Just as for outliers, a 
regression trend line is fit up to the point where this large difference occurs and residuals are obtained for the remaining 
periods. Because a level change is assumed to have lasting effects, both the magnitude and the direction of residuals 
must be examined. Two conditions must then be satisfied for qualifying an instability as a level discontinuity. Firstly, 
the large increase or decrease in residuals should be sustained for at least three periods after the indicated point of 
discontinuity. Residuals for these three points should be of similar magnitude. Secondly, the direction of the residuals 
after the discontinuity point should be opposite to that of the periods before the discontinuity. If the residuals are 
positive before the level shift, they should now become negative. 

 
The identification of a level discontinuity is illustrated in Figure 2. A level shift occurs at t9. This discontinuity 

is indicated by the presence of a large second difference at t10. Notice that the second differences also indicate a 
relatively large change at t9 and t11. Our interest though is in the largest difference and that occurs at t10 here. A 
regression line is run through t0 to t7 and residuals are produced for the periods t8 to t12. The residuals decrease abruptly 
at t9 from positive to negative and this negative pattern of residuals is maintained till the end of the series. 
 
Figure 2. Detecting a level discontinuity: An example. 
 

 
 
 
4.4. Unusual last observation 
 

An unusual last observation occurs when the last data point deviates substantially from the previous pattern. 
The detection of this instability is important because it has a strong effect on the level and trend estimates of most 
extrapolation methods. An unusual last observation can be regarded as a special case of outliers. This feature is 
detected using first differences. If the first difference for the last data point, tn, is greater than three standard deviations 
from tn-3, then an unusual observation exists at the last data point. An unusual last observation is replaced by the 
average of its original value and the forecast from regression. 

 
 

4.5. Changing basic trend 

A change in the basic trend of a series is identified by comparing the slope in the early part of the historical 
data with that in the more recent past. If there is a large difference in slopes, a change in the basic trend could have 
occurred. 

 
Figure 3 illustrates the concepts behind this heuristic. In this series, the basic trend is changing although the 

change is masked by the instability in the trend of the series. A regression line is fitted on the first third and the last 
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third of the series that is from point t1 to t5 and from t10 to t13. The fit indicates a significant difference between the 
slopes as is evidenced from the fit lines. Results from this procedure, however, may be biased if either of the two 
regression lines runs through extreme points or if the number of observations is low, as in this example. A second test is 
then conducted by fitting another pair of regressions – this time in the first half and the second half of the series, from t1 
to t7 and from t8 to t13 If the second test also indicates the presence of a slope change, then the slope change is 
confirmed. Both of the conditions must be met to classify the series as one with a changing basic trend. 
 
Figure 3. Detecting a changing basic trend: An example. 

 
 

 
4.6. Unstable recent trend 
 

Occasionally, short-term trends become unstable, making it difficult to estimate parameters for short-term 
exponential smoothing methods. For the feature detector, we developed two tests to identify an unstable recent trend. 
Firstly, we examine the standard deviation of residuals for the recent trend. For annual series, we estimate that the last 
20% of the series would be an appropriate representation of the recent trend. If this were less than five data points, we 
used a default value of 5. If the standard deviation of residuals for the recent trend was beyond a threshold, the series 
was assumed to be unstable in the recent period. 

 
In the second test, we compare standard deviation of the residuals from the recent trend with that for the 

previous trend. If residual for the recent trend is greater than that for the first half of the series by a certain threshold, 
then the recent trend is determined to be unstable. 

 
Figure 4 illustrates application of the unstable recent trend heuristic using a series for which the trend is 

fluctuating and the series is noisy. The standard deviation of the residuals for this series is greater than 5.0, which is the 
threshold determined for the first part of this test. If this condition is not met, then a regression trend line is fit from t1 to 
t11 and another from t12 to t22. If the residuals for the second half of the series are greater than 2.5 standard deviations 
from that of the first half, the series would pass the second test of the heuristic and thus be classified as a series with an 
unstable recent trend. 
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Figure 4. Detecting an unstable recent trend: An example. 
 

 
 

5. Comparison of Classifications from Heuristic and Judgmental Codings 

We compared the heuristic identification of time series features on 122 series from C&A with judgmental 
classifications from C&A. Tables 2 and 3 provide details of this comparison for the development and validation 
samples. In these tables, “judgment” indicates features identified by the judgmental codings, “automatic” indicates 
features identified by the heuristics. “Both” indicates series for which there was agreement between the judgmental 
feature detection heuristics. For instance, in the development sample the heuristics identified a total of 27 changing 
basic trends (slope changes). The experts identified 24. The two approaches agreed on 14 codings (“both”). Another 10 
series that were coded judgmentally as having slope changes were missed by the heuristics. The heuristics identified 15 
series as having a slope change that the coders did not. 
 
Table 2. Agreement of judgmental and heuristic coding: Development sample 

Codings Differences 
Features Judgment Automatic Agreement Judgment Automatic 

Additive functional form 

Outliers 

Level discontinuity 

Unusual last observations 

Changing basic trend 

Unstable recent trend 

  8 

 – 

  5 

  3 

24 

17 

14 

  5 

  8 

  8 

27 

17 

  0 

 – 

  3 

  3 

14 

11 

  8 

 – 

  2 

  0 

10 

  6 

14 

 – 

  5 

  5 

13 

  6 

* Comparisons were not possible for outliers since C&A did not indicate the series where outliers were present. 
Only the total outliers detected were available. 
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Table 3. Agreement of judgmental and heuristic coding: Validation sample 
Codings Differences 

Features Judgment Automatic Agreement Judgment Automatic 

Additive functional form 

Outliers 

Level discontinuity 

Unusual last observations 

Changing basic trend 

Unstable recent trend 

14 

–* 

  3 

  0 

17 

10 

10 

11 

  1 

  4 

15 

12 

  0 

11 

  0 

  0 

10 

  6 

14 

– 

  3 

  0 

  7 

  4 

10 

– 

  1 

  4 

  5 

  6 

* Comparisons were not possible for outliers since C&A did not indicate the series where outliers were present. 
Only the total outliers detected were available. 

 
There was wide variation in the agreement between expert and automated codings. The highest agreement 

occurred on the coding of changing basic trend. On the other hand, codings of functional form differed greatly. Of the 
122 series used in this study, 24 were coded as having an additive functional form by the automated procedures. While 
the experts had coded 22 series as additive, there was no agreement between the automatic and judgmental codings. 

 
Of the eight series identified judgmentally as having a level discontinuity, the heuristic identified three. The 

heuristic identified six additional series as having discontinuities. An examination of plots for those series with 
differences between judgmental and automatic identification indicated that these were often noisy series. Sometimes 
the nature of the series was confounded by the presence of other features. For instance, in series 46, the level 
discontinuity identified judgmentally occurred over several time periods. Consequently, instead of being identified 
as a level discontinuity, the feature detector identified a slope change. Differences at the “automatic” coding 
indicated the presence of a small level discontinuity that might have been overlooked at the time of visual 
inspection. At other times, the sensitivity of the test appears to have identified a slight deviation in an otherwise 
smooth series as a level discontinuity. 

 
The heuristic for identification of unusual last observation agreed with all three series coded judgmentally. 

The heuristic identified nine additional series that were not identified. Eight of these 12 observations were in the 
development sample and four in the validation sample. The test appears to be sensitive to small deviations that were 
not noticed by experts. 

 
Slope changes were identified judgmentally for 41 of the 122 series. The heuristic identified 24 of these but 

missed 17. An additional 15 series were identified by the heuristic as having a slope change. On examination of 
plots, it appeared in several cases that the judgmental process had identified slope changes in series that were 
relatively smooth (e.g.,16, 168). In other cases, what appeared to be a slope change in the recent periods was 
rectified as a result of adjustment of previously identified features (e.g., in series 53 adjustment for an unusual last 
observation removes a slope change). Conversely, “automatic” coding differences were influenced by detection and 
adjustment of features such as outliers and level discontinuities. 

 
Seventeen of the 26 series identified by the experts as having an unstable recent trend were also identified 

automatically as such. Twelve more series were identified by automatic procedures but not by judgment. Patterns in 
“judgment” and “automatic” differences were similar to those for slope change detection. 
 
 

6. Validation and Testing Procedures 
 

As expected, the differences between judgmental and automatic codings were more serious in the 
specification of functional form. Therefore, we compared the forecast accuracy of heuristic and judgmental codings 
to gain a better understanding of the impact of automating the feature identification process. We expected that the gains 
made in terms of cost savings and reliability might compensate for a small decline in forecasting accuracy. 

 



 10

We integrated the heuristics with the original RBF rules into an expanded version of RBF, RBF(A). We then 
produced forecasts for 122 of the 126 time series used by C&A and compared their accuracy to those from RBF as 
reported in C&A. RBF was originally calibrated on 36 series, then tested on validation sample V1 which contained 18 
series. V 1 was then combined with the calibration sample and RBF was re-calibrated. This procedure was repeated 
with V2 which contained 36 series. The final validation of RBF was then done only on 36 series in sample V3. We 
present our validations of RBF(A) on the same samples used in C&A - Vl to V3. Forecasts were produced for 1 to 6-
ahead horizons, resulting in 732 forecasts across all 122 series. Furthermore, as in C&A, we used equal-weights and 
random walk for comparisons. If RBF(A) suffered no serious loss in accuracy as compared to RBF and these 
benchmarks, then the case for using automated feature detection would be fairly strong. However, if RBF(A) declined 
in performance, then the heuristics would need to be subjected to further validations. 

 
While implementing RBF(A), 10 corrections were made to the original rule-base as presented in C&A. These 

corrections are described in Adya (2000) and the corrected rules are available on the web site 
forecastingprinciples.com. Consequently, original feature codings from C&A were rerun on the updated version of 
RBF. Results from this run indicated no improvements in accuracy on validation sample V3 from C&A. Future 
references to RBF in the paper apply to this corrected version of RBF. 

 
We used multiple error measures for assessing the performance of RBF(A) as recommended by Armstrong 

and Collopy (1992). One of these, the relative absolute errors (RAEs), relates the performance of a method to that of 
the random walk. Armstrong and Collopy (1992) found that both mean and median RAEs and absolute percentage 
errors (APES) were reliable and had good construct validity. The geometric mean of RAEs (GMRAEs) and mean 
APES (MAPEs) are sensitive to the impact of parameter changes but do not provide sufficient outlier protection. 
Median RAEs and APES are relatively less sensitive to small changes. The insensitivity is, however, valuable in 
protecting against outliers. Consequently, in this study, all four measures are reported. Both RAEs and APES are 
computed for each horizon in each series. Cumulative RAEs and cumulative APEs summarize performance across 
horizons. Geometric mean of RAEs (GMRAEs), median RAEs (MdAPEs), mean APEs (MAPEs), and median APEs 
(MdAPEs) are used to summarize across series. 

 
Table 4 presents summary results using multiple error measures for the 1-ahead, 6ahead, and cumulative 

forecasts for the three validation samples. 
 
Table 4. Ex-ante forecast errors for validation samples VI -V3 

MdRAE GMRAE MdAPE MAPE 
Extrapolation Procedure 1-year 6-year Cum 1-year 6-year Cum 1-year 6-year Cum 1-year 6-year Cum 

Validation sample V1 
   Equal weights 
   RBF 
   RBF(A) 

 
0.68 
0.58 
0.55 

 
0.66 
0.61 
0.61 

 
0.77 
0.77 
0.54 

 
0.77 
0.45 
0.54 

 
0.69 
0.58 
0.50 

 
0.79 
0.66 
0.60 

 
3.79 
1.89 
2.11 

 
20.57 
14.37 
13.18 

 
13.95 
12.23 
9.18 

 
8.20 
8.71 
6.70 

 
24.50 
24.10 
21.64 

 
15.97 
15.67 
13.85 

Validation sample V1 
   Equal weights 
   RBF 
   RBF(A) 

 
0.78 
0.46 
0.62 

 
0.55 
0.71 
0.46 

 
0.60 
0.61 
0.64 

 
0.94 
0.42 
0.43 

 
0.58 
0.47 
0.43 

 
0.61 
0.47 
0.44 

 
3.56 
1.28 
1.55 

 
17.62 
9.21 
 9.84 

 
11.23 
7.54 
7.56 

 
7.46 
4.95 
5.25 

 
28.48 
25.42 
23.40 

 
15.98 
13.72 
13.38 

Validation sample V1 
   Equal weights 
   RBF 
   RBF(A) 

 
0.82 
0.58 
0.56 

 
0.63 
0.58 
0.51 

 
0.69 
0.60 
0.61 

 
0.95 
0.57 
0.49 

 
0.76 
0.62 
0.46 

 
0.77 
0.68 
0.60 

 
4.69 
2.98 
2.49 

 
19.29 
14.71 
12.91 

 
10.69 
12.22 
10.26 

 
8.62 
5.74 
6.17 

 
32.56 
14.71 
18.56 

 
18.58 
12.22 
12.87 

 
Over all the horizons, RBF(A) performed about as well as RBF. For validation samples Vl and V3, GMRAEs 

for RBF(A) improved over RBF for all horizons. MdAPEs indicate equal or better performance as summarized in 
Table 5. 
 



 11

Table 5. Ex ante forecast errors for extrapolation procedures, median APEs* 
1-yar ahead forecasts 6-year ahead forecasts Cumulative forecasts 

Extrapolation Procedure 
V1 
(18) 

V2 
(35) 

V3 
(35) 

Wtd 
avg 

V1 
(18) 

V2 
(35) 

V3 
(35) 

Wtd 
avg 

V1 
(18) 

V2 
(35) 

V3 
(35) 

Wtd 
avg 

Random walk 6.05 5.23 5.61 5.55 30.39 25.16 25.39 26.26 23.83 19.75 22.99 21.87 
Equal weights 3.79 3.56 4.69 4.06 20.57 18.00 19.29 19.04 15.75 14.57 10.69 13.27 
RBF 2.80 3.10 3.20 3.08 13.00 9.10 14.20 11.93 – – – – 
RBF(A) 2.11 2.10 2.83 2.39 15.39 10.18 13.89 12.72 11.82 9.00 9.92 9.94 

* Cumulative forecasts from RBF were not available for comparison 
 
Table 6 summarizes the forecast accuracy of judgmental and automatic identification on series in which their 

features differ. Since the samples are small, the conclusions here are only suggestive. 
 
Table 6. Comparison of automatic with judgmental coding series with different endings: relative 
absolute errors 

1-ahead RBF(A) 6-ahead RBF(A) Cumulative RBF(A) 
Features 

Total 
different Better Some Worse Better Some Worse Better Some Worse 

Outliers 
  Automatic 
   Judgment 

 
16 
 

 
  5 
– 

 
6 
– 

 
5 
– 

 
3 
– 

 
5 
– 

 
  8 
  – 

 
  4 
  – 

 
7 
– 

 
  5 
  – 

Unusual last 
  Automatic 
   Judgment 

 
  9 
– 

 
  2 
– 

 
1 
– 

 
6 
– 

 
3 
– 

 
2 
– 

 
  4 
  – 

 
  2 
  – 

 
2 
– 

 
  5 
  – 

Level discontinuities 
  Automatic 
   Judgment 

 
  6 
  5 

 
  1 
  2 

 
4 
2 

 
1 
1 

 
1 
3 

 
3 
– 

 
  2 
  2 

 
  1 
  3 

 
4 
1 

 
  1 
  1 

Changing basic 
  Automatic 
   Judgment 

 
15 
12 

 
  6 
  4 

 
6 
1 

 
3 
7 

 
5 
4 

 
3 
1 

 
  7 
  7 

 
  5 
  4 

 
6 
1 

 
  4 
  7 

Unstable recent trend 
  Automatic 
   Judgment 

 
12 
  6 

 
  8 
  1 

 
3 
3 

 
1 
3 

 
3 
3 

 
4 
4 

 
  5 
  – 

 
  4 
  3 

 
5 
3 

 
  3 
  1 

Functional form 
  Automatic 
   Judgment 

 
18 
24 

 
11 
14 

 
4 
3 

 
3 
7 

 
8 
5 

 
3 
4 

 
  7 
15 

 
  8 
10 

 
4 
3 

 
  6 
11 

 
 
6.1. Changing basic trend 
 

For series where automatic identification did not identify a change in basic trend but judgement did, forecast 
accuracy suffered. When the detectors identified a series that judgmental coding missed, forecast accuracy for the short 
periods improved slightly. 
 
 
6.2. Unstable recent trend 
 

For series where the heuristics identified an unstable recent trend, typically the 1-ahead forecasts were better than 
those for judgment. Judgmental coding yielded same or better forecasts for the long horizon. 
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6.3. Functional form 
 

Forecasts for series that were coded as additive by the automatic feature detectors but multiplicative by experts 
were at least as good as those reported for RBF on the 1-ahead, 6ahead, and cumulative horizons. Similar gains were 
not observed for series that were coded as multiplicative by the heuristics and as additive by the experts. This raises 
questions about the sensitivity and completeness of the functional form heuristic which must be subject to further 
examination. There is also an argument that functional form is essentially a domain-based feature that does not benefit 
from identification of patterns in the historical data. 
 

Considering all features, there were 78 series where heuristic and judgmental codings differed on one or more 
features. For almost 30% of the series, judgmental and heuristic codings yielded similar error measures for 1-ahead, 6-
ahead, and cumulative horizons. Of the remaining series, there were as many series that did better with automated 
feature detection as there were that did worse. Decreased accuracy in some series were offset by gains in others. In 
general, then, the introduction of automated heuristics for feature detection in RBF did not reduce forecast accuracy. 

 
 

7. Some Issues Related to Automatic Feature Identification 
 

The detection and correction of outliers, level discontinuities, and unusual last observations occasionally 
either induced another feature or removed other features that had been identified in the judgmental codings. For 
instance, in series 56, a level discontinuity was identified. When the heuristic corrected for this, it resulted in 
highlighting a slope change that had otherwise been masked by the more prominent level discontinuity. 

 
It is possible that when features were judgmentally coded, judges were unable to anticipate the effects of 

corrections or adjustments that the rules would make in response to other features. Therefore, the automatic process 
may be beneficial over the more holistic judgment employed by experts in C&A. We do not know how it would 
compare to a more decomposed judgment. 

 
A major challenge was to apply the heuristic to series that differed in terms of variation and noise. For 

instance, the heuristics should be able to identify a changing basic trend or a level discontinuity for series that are 
smooth as well as those that are noisy. We used different threshold levels. For instance, a noisy series would have to 
meet more rigorous threshold requirements. 

 
Our heuristics were developed- on 70 time series and were tested on 52. Further work is required to validate 

them with larger samples of data. In particular, further analysis is required to better understand the causes for and the 
effects of differences in judgmental and automatic coding of the functional form. 
 
 

8. Conclusion 
 

Automatic feature identification significantly reduced the costs of forecasting large data sets with no 
appreciable loss in forecast accuracy in this study of 732 forecasts. The most significant contribution of this study is 
that it has automated forecasting decisions that are time consuming. Analysts are required to code only the domain-
based features that typically take under a minute to identify. Moreover, these features tend to stay stable over longer 
periods of time thereby further reducing costs of recoiling. Automating feature detection has also introduced 
consistency and reliability into the forecasting process. The added reliability could contribute to further efforts in the 
validation and refinement of rule-based forecasting. More importantly, it is now possible to apply RBF to a large 
number of series, such as the M3-IJF competition (Adya, Armstrong, Collopy and Kennedy, 2000). 
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